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Abstract—As one of the powerful tools of machine learning,
Convolutional Neural Network (CNN) architectures are used to
solve complex problems like image recognition, video analysis
and natural language processing. In this paper, three different
CNN architectures for age classification using face images are
compared. The Morph dataset containing over 55k images is
used in experiments and success of a 6-layer CNN and 2 variants
of ResNet with different depths are compared. The images in the
dataset are divided into 6 different age classes. While 80% of the
images are used in training of the networks, the rest of the 20% is
used for testing. The performance of the networks are compared
according to two different criteria namely, the ability to make
the estimation pointing the exact age classes of test images and
the ability to make the estimation pointing the exact age classes
or at most neighboring classes of the images. According to the
performance results obtained, with 6-layer network, it is possible
to estimate the exact or neighboring classes of the images with
less than 5% error. It is shown that for a 6 class age classification
problem 6-layer network is more successful than the deeper
ResNet counterparts since 6-layer network is less susceptible to
overfitting for this problem.

I. INTRODUCTION

Automated age estimation from facial images is an impor-
tant problem studied in several fields such as computer foren-
sics, human computer interaction, biometrics, entertainment,
pattern recognition, and computer vision. An accurate age
estimation forms the basis for applications such as producing
younger or older images of a person, which is needed to find a
missing person or a criminal. An age estimation system may be
used to prevent vendine machines from selling products, e.g.,
alcohol, tobacco, to underaged individuals. The fact that peo-
ple’s preferences change depending on their ages also yields a
number of potential applications of automated age estimation.
In all these applications, the individual is not required to be
identified, but rather his/her age is to be estimated. Due to the
importance and a number of application areas, the problem has
received much attention employing a diverse set of solutions
from both industry and academia [1].

The main difficulty for solving this problem lies in different
aging patterns of different people, i.e., aging patterns depend
on both internal and external factors such as genes, gender,
lifestyle, ethnicity, and race [2]. Thus, the actual age of a
person may be different from his/her appearance age. Given a
face image, the objective of computer-based age estimation is
to assign a label to the face with the exact age or the age group
it belongs. We focus on the problem of age group classification
rather than that of exact age estimation in this paper.

The relationship between age and face is studied in the
context of simulating the aging effects on human faces, e.g.,
[3], [4], [5], [6]. To name a few, aging variations are simulated
by superimposing typical aging changes in shape and color on
face images in [3]. A dense surface point distribution model for
expressing the shape changes with respect to growth and aging
is presented in [6]. While these techniques do not perform
age estimation, the mapping from age to face inspires various
frameworks to do the automated age estimation.

One of the earliest age estimation frameworks is due to
Lanitis et al. [7], who generate a statistical model of facial
appearance used as the basis for obtaining a compact para-
metric description of face images. Shortest distance classifier,
supervised and unsupervised neural networks are employed for
designing the age estimator in this work. Although promising
results have been reported, empirically determining the aging
function, learning of an individual’s aging pattern based on
the face images of the individual only, and computing the
aging function for the previously unseen face image simply as
a linear combination of the known aging functions are main
drawbacks associated with this approach.

To address these problems, Geng et al. [2] present the
AGES framework, where the aging pattern is modeled by
obtaining a representative subspace based on the sequence of
a particular person’s face images sorted in time order. The
aging pattern of an unseen face image is then computed by the
projection in the subspace that reconstructs the face image with
minimum reconstruction error. The lack of complete aging
patterns yields incomplete training data. To deal with this issue,
an iterative learning algorithm that estimates a part of the
missing personal aging pattern using the global aging pattern
model is adopted.

Ricanek et al. [8] use the Active Appearance Model (AAM)
to obtain relevant aging features and identify the most impor-
tant ones through Least Angle Regression (LAR). AAM has
also been used in various techniques ([9], [10]) to extract the
appearance features, which is capable of describing the shape
and texture of a face image with a set of parameters, after a
proper training. The performance of AAM for facial aging is
also studied in [11]. A recent survey on face estimation may
be found in [12].

In this paper, we study the performance of deep convolu-
tional neural networks (CNN) with three different architec-
tures for age classification. Our motivation for using deep
CNN comes from recent studies showing that they achieve a



56x56x96 28x28x256

227x227x1

Relu Relu
Pool Pool

Norm Norm

INPUT

Convolution Convolution
Layer 1 Layer 2

TxIx1 5x5x96

Feature Learning

Fig. 1.

tremendous success for several computer vision tasks such as
image classification [13], [14] and object detection [15], [16].
CNN obtain a suitable feature vector consisting of low, mid,
and high level features by training the entire system end to
end. The use of CNN for age estimation is not new as it has
been recently introduced in [17]. Although powerful results
have been reported by this approach, its network architecture
is rather simple, i.e., it consists of only three convolutional
layers and two fully-connected layers with a small number of
neurons. On the other hand, the network depth is shown to
be important [18] and the best image classification techniques
exploit much deeper models [19], [20].

To see whether deeper CNN achieve better age classifica-
tion scores, we employ [17], ResNet-18 and ResNet-34 [21],
consisting of 6, 18 and 34 layers, respectively. ResNet-18 and
ResNet-34 are successfully used on the ImageNet classification
dataset [22] consisting of 1000 classes. For the experiments,
we use the MORPH dataset [23] containing more than 55k
near-frontal face images.

The rest of the paper is organized as follows. After in-
troducing the CNN architectures and the dataset in the next
section, we present the image processing algorithms applied
to each input face image in Section III. We then describe the
experiments and report the age classification results for each
architecture in Section IV. The paper is concluded in Section
VI

II. NETWORKS AND DATASET
A. 6 Layer CNN

The structure of the 6 layer CNN is shown in Fig. 1.
The network is composed of three convolutional layers and
three fully-connected layers. The data volumes of each layers
are shown at the top of the layers in figure. Although the
original network architecture uses 227x227 RGB images as
input, in this study, grey scale images at the same resolution
are processed in the network. While three convolutional layers
are followed by rectified linear operator (ReLU) layers and
local response normalization (Norm) layers taking the maximal
value of 3x3 regions with two-pixel strides, the first two fully
connected layers are followed by ReLu and dropout layers
having a 0.5 dropout ratio. The last fully connected layer has
6 neurons corresponding to the values for each age class in
the discussed study.
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B. ResNet

As reported in [24], [25], [21], plain networks whose build-
ing blocks are shown in Fig. 2 tend to degrade as the networks
become deeper. So as to deal with the degradation problem and
use deeper networks to solve complicated problems residual
networks are employed. Although the earlier implementations
of residual networks exist in the literature, the advantages of
the residual network is discussed in a recent work of [21].
According to the discussion in that paper, the residual networks
are more resistant to the degradation with respect to plain
networks. In a network, the main motivation beyond generating
residual connections is to provide alternative connections to the
regular ones. As shown in Fig. 2, the residual connections have
a constant coefficient, which equals to 1, excluding the residual
connections from train procedures. In a train procedure, if the
coefficient of a regular connection tends to converge to 0, the
residual shortcut assures the integrity of the network. When
a regular connection is shortcutted by a residual connection
the cumulative data calculated before the regular connection
is forwarded to the rest of the net. The alternative connections
give the opportunity to the network to be able to use these
shortcuts instead of regular connections when necessary.

So far ResNet [21] is the most successful residual net-
work used in different objectives. Based on ResNet, different
residual CNN architectures are generated and submitted to
ILSVRC and COCO competitions. In these competitions, the
submitted networks won ImageNet classification, ImageNet
detection, ImageNet localization, COCO detection and COCO
segmentation tasks. An example of ResNet architectures com-
posing of 18 convolutional layers and modified within this
study is shown in Fig. 3. In this architecture, Norm and
ReLu operations are used after each convolution layer. The
residual connections are realized by sum operations and the
curved arrows indicate the shortcut residual connections to
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Fig. 2. Plain Building Blocks (left) and Residual Building Blocks (right)
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the sum operations. After 4 groups of convolution layers the
final convolution layer placed to realize classification opera-
tion to the input images. Different than the 6 layer network
discussed previously, the ResNet architecture does not include
any dropout layers. There are different versions of ResNet
architecture, some of which have more than 1000 convolution
layers. Among the ResNet versions, ResNet-18 and ResNet-34
are considered to be suitable in order to compare with the 6
layer counterpart in terms of depth vs. success.

C. Dataset

The face database used in this paper is Album-2 of Cran-
iofacial Longitudinal Morphological Face Database (MORPH)
[23]. The images in the dataset belong to individuals pho-
tographed from front within five year period as shown in Fig.
4. Dataset contains 55,134 images belonging to more than
13,000 persons whose ages range from 16 to 77. The median
age in the dataset is 33 and each person in the dataset have 4
images on average. It is one of the largest datasets available
for research purposes and the size of the dataset make it
suitable for learning experiments. Moreover, since the persons
in the dataset represent different races and moods, the dataset
provides sufficient image diversity for learning.

III. IMAGE PROCESSING

In order to increase the success of the learning process, the
objective function binding the input images to output classes
is simplified. It is intended to equalize the useful information
coming from each image to the network. To do so, grey
scale conversion, image rotation, visage detection, and visage
rescaling processes are applied to the images in database as
shown in Fig. 5.

A. Image Rotation

After all raw images in the dataset are converted to grey
scale, image rotation is applied. With this step, it is intended to
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Sample face images from the Morph Dataset

make the direction of the visages parallel to the vertical image
edge. To make image rotation, a method composing of two
phases is applied. In the first phase, the rotation is applied by
finding the eye pairs and rotating the images with respect to
the direction of the line connecting the eye pairs. In case, the
eye pairs are not found and thus, the images are not rotated
in the first phase successfully, we find the face directions and
rotate the images with respect to the direction of the faces in
the second phase of the method.

More specifically, in the first phase of the method, both
eyes are detected separately and the necessary rotation angles
are determined with respect to the vertical positions of the
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eyes. To detect the eyes, two different variants of Viola Jones
algorithm [26] are used. Classification and regression tree
(CART) [27] based eye detection algorithm gives the correct
eye positions in 54121 images of the 55134 images in the
dataset. Decision stump based eye detection algorithm [28]
gives the eye positions of 500 images of the remaining ones.
For the remaining 523 images of the dataset, eye detection
algorithms do not give the correct positions of the eye features.
Therefore, face detection algorithms are used in second phase
for image rotation. In the second phase, 2 variants of Viola
Jones algorithm to detect faces are used to obtain the rotation
angles. The main idea of this phase relies on the fact that
face detection with Viola Jones algorithm is sensitive to image
rotations. More precisely, while detecting the face features,
Viola Jones algorithm locates only the features, which do not
have a big leaning angle with respect to the vertical edge of
the image. The following steps are, thus, followed to estimate
the rotation angle. For each image, its rotated versions are
generated starting from a rotation angle of -45° to 45° with
1° steps. Local binary patterns (LBP) based face detection
[29] and CART based face detection [30] algorithms are then
applied to the rotated images. When successful face detections
occur in rotated images with these face detection algorithms,
the rotation angles are recorded and mean of the recorded
angles for each image is used to make image rotation.

B. Visage Detection

The next image processing technique applied to each
rotated image in the database is the visage detection. We
note that while training a CNN for age classification, the
pixels outside the visages do not provide valuable information.
Therefore, such pixels positioning outside of the image visages
are cropped out from the rotated images. The visages detected
in this step are square crops whose vertical and horizontal
pixels counts are equal. In order to detect the visages in the
images, two variants of Viola Jones face detection algorithms
are employed similar to the previous image rotation step.
First, CART based face detection [30] algorithm is applied
to the images. If this algorithm is not successful in finding the
visages, LBP based face detection is then used. According
to the visage detection results, CART based face detection
algorithm finds visages in 55038 rotated images of the dataset.
LBP based face detection algorithm finds visages in 35 of the
remaining images and in the rest of the 61 of the images no
visages are detected with any of these algorithms. Moreover,
we note that 41 of the detections made with CART based face
detection and 9 of the detections made with LBP based face
detection are incorrect. In order to use the complete dataset,
visages are cropped manually in the 61 images in which no
face detection is achieved and in the 50 images in which
incorrect visages are detected. Since the networks used in this
study require 224x224 and 227x227 square images as input,
the detected face crops are rescaled to match with the input
sizes of the networks.

IV. EXPERIMENTS

A. Errors in Dataset Meta Data

Before proceeding with the train and test phases, the whole
dataset is examined and the documented ages in the meta
data of the images are checked. Since some obvious errors

in the provided ages are noticed, born dates and image dates
are checked for the whole dataset. We observe that there
are different born dates for some images belonging to the
same person in the dataset. More specifically, 10163 of the
images have unreliable born dates. To make the dataset more
reliable, the following correction is applied. When face images
belonging to the same person are associated with more than
one born date and one of these born dates is observed more
frequently than others, the all of the born dates for this person
is set to this frequent born date. With this method, the born
dates for 9913 images are corrected. Secondly, if the face
images of the same person have more than one born date and
no frequent born date is observed, we apply no change. For
the images with unreliable born dates, the age meta data of
the images are calculated again and the new computed ages
are used in the experiments.

B. Tests

In order to increase the number of the images used in the
experiments, horizontal flips of the images are generated. With
these flips the number of the images used is doubled to 110268.
In the experiments, 80% of the images are used in training the
CNNs and the remaining 20% is used for testing. The images
in the dataset are divided into 6 different classes whose age
boundaries and number of images are shown in Table I.

After the images are divided with respect to the age classes,
train and test sets are generated. In each class, images are
randomly distributed among train and test sets while preserving
the train-test ratio. When distributing the images, in case an
image belonging to a person is randomly placed in one of the
train or test sets, then all of the images belonging to the same
person and their horizontal flips are also placed to the same
set. With this principle, the data diversity of train and test sets
is preserved.

While training the CNNs, the weight decay and momentum
values are selected as 0.0001 and 0.9 are selected, similar to
[21]. The learning rate is started from 0.001 and decreased
according to the progress in learning. The train procedures
continue until precise stabilizations are observed for test errors.
These stabilizations do not occur before 60 epochs for the
CNNs trained. On a NVIDIA Quadro K4000 192 bit GPU
with 3GB memory, the train process of 6-layer network lasts
about 1 day. The train procedures for ResNet-18 and ResNet34
last 8 times and 16 times longer than the 6-layer network,
respectively. Note that to make a fair comparison in the
experiments, the same train and test sets are used for all of
the train procedures.

V. RESULTS

In order to compare the success of the performance of
the trained CNNs, two different criteria are used. The first
criterion is to see whether an input image can be correctly
classified, while the second criterion is defined as the 1-off
success, showing whether an input image can be correctly

TABLE I.  THE NUMBER OF IMAGES IN CLASSES
16-20 | 21-27 | 28-34 | 35-41 | 42-48 | 49-
18910 | 23638 | 18990 | 22784 | 16654 | 9292




classified or it can be classified in one of the neighbors of the
correct class. The 1-off success is useful especially for cases
where the age of a person is close to the boundary between
two age classes. When this occurs, the networks should not
be penalized for classifying the input image as one of its
neighbors. Therefore, 1-off success should be considered as
the main success criterion in the discussions throughout this

paper.

The overall age classification results are presented in Tables
IL, IIT and IV respectively. The rows in the tables correspond to
the real age classes, while columns correspond to the estimated
age classes of test images. The diagonal cells colored as dark
green indicate the number of images whose ages are estimated
correctly. For each row, non-diagonal elements contain the
number of images whose ages are estimated incorrectly and
the columns of these elements indicate the age class estimated
incorrectly. In the non-diagonal cells for each row, the light
green colors show the number of neighboring class estimations
increasing the 1-off success rate.

As shown in Tables II, III and IV, for each row, while
moving away from diagonal cells the numbers in the cells
converge to 0. This shows that all of the networks are suitable
to be trained for 6-class age classification problem. In Table V,
the overall exact and 1-off successes of the networks is shown.
According to the overall results, for both exact success and 1-
off case, we observe that 6-layer network is more successful
than the other deeper residual networks. Precisely, the 6-layer
network has more than 95% success for 1-off criteria and
more than 53% success for the exact criteria. In terms of
standard deviation among success rates in different age classes,
6-layer network has the minimum value. This presents that the

TABLE II. TEST RESULTS OF 6-LAYER NETWORK W.R.T CLASSES

Number of Estimations w.r.t. Classes
16-20 | 21-27 | 28-34

Image
Classes

28-34

35-41 3
42-48 1
49- 0
TABLE III. TEST RESULTS OF RESNET-18 W.R.T. CLASSES
Image Number of Estimations w.r.t Classes
Classes | 16-20 | 21-27 | 28-34 | 35-41 | 42-48 | 49-
7 0 0
136 13 0
28-34 2
35-41 28
42-48 3
49- 1
TABLE IV. TEST RESULTS OF RESNET-34 W.R.T. CLASSES

Number of Estimations w.r.t Classes
16-20 | 21-27 | 28-34

Image
Classes

TABLE V. EXACT AND 1-OFF SUCCESS OF NETWORKS

Image 6-Layer ResNet-18 ResNet-34

Classes Success% Success% Success%
Exact | 1-off | Exact | 1-off | Exact | 1-off
16-20 | 49.72 | 97.78 | 69.36 | 97.19 | 61.97 | 95.78
21-27 | 69.78 | 97.20 | 57.09 | 96.86 | 59.22 | 94.83
28-34 | 4478 | 96.89 | 37.40 | 92.00 | 34.12 | 91.13
35-41 | 57.05 | 95.32 | 54.41 | 93.92 | 53.88 | 92.80
42-48 | 42.67 | 93.70 | 45.00 | 93.03 | 45.37 | 92.46
49- 48.59 | 90.92 | 45.34 | 88.28 | 42.02 | 86.81
Mean | 53.76 | 95.82 | 52.56 | 94.23 | 50.94 | 92.96
STD 9.98 2.61 11.29 | 3.31 10.76 | 3.17

success of 6 layer network is less dependent to the age classes.
Although ResNet-34 is deeper than ResNet-18 and have more
classification potential, the shallower is more successful for
both of the criteria.

While discussing the classification performances for the
networks, the ResNet [21] paper must be revisited. In the
paper, after the classification power of ResNet versions are
discovered the authors explore the success of ResNet proto-
type by experimenting a 1202-layer version for a 10 class
problem. They end up with the fact that ResNet-1202 is not
as successful as ResNet-110 and they argue that ResNet-
1202 is unnecessarily large and more susceptible to overfitting
than the shallower ones. While analyzing the classification
performances for ResNet-18 and ResNet-34 in this paper,
we observe a similar situation. ResNet-34 is unnecessarily
large with respect to ResNet-18 in a 6 class age classification
problem having similar input images, i.e., very few number
of pixels give necessary information for age classification.
Since 6-layer network is more successful than ResNets, we
argue that in the learning procedure, ResNets learn irrelevant
data from visages, which in turn, causes reductions in the
performance. As pointed out in [21], the lack of dropout layers
can be considered as one of the reasons reducing the success
of ResNet architectures.

Finallly, we analyse the images correctly classified accord-
ing to the 1-off success using all three architectures (Figure 6).
We observe that 88.44% of images are classified correctly by
all networks. Moreover, in 1.12% of the test images none of the
networks is successful. In addition, all of the networks have the
ability to classify some test images in which no other network
is successful. Specifically, 1.83% of the images are only
classified correctly by 6-layer, while 0.79% and 0.57% of the
images are classified by Resnet-18 and Resnet-34. respectively.
These results are consistent with the previous performances
and depict the improved classification rate offered by 6-layer.

Fig. 6. 1-off success ratios of CNNs



VI. CONCLUSION

In this paper, the exact and 1-off success for three CNNs
with different depths and architectures are examined for an
age classification problem consisting of 6 classes. Prior to
the train and test stages, the input images are rotated and the
visages in the images are detected and cropped. After the long
train procedures run on GPU, test images are classified by
the trained networks. It is observed that although ResNet18
and ResNet-34 are perfect architectures to solve complicated
classification problems, they are unnecessarily large with re-
spect to 6-layer network for the relatively simpler classification
problem discussed in this paper. When both the success and
duration of training periods are considered, 6-layer network
is more suitable than its deeper competitors for this problem.
Although, with residual networks, it is sometimes possible to
overcome the degradation problem occurring in deeper CNNss,
it is not the case for this age classification problem since
overfitting makes ResNet-34 less successful than ResNet-18.

For future work of this study, networks can be trained when
the images in the dataset are divided into more age classes.
The classification performance of networks deeper than 6-
Layer network and shallower than ResNet-18 can be examined.
Moreover, in order to understand the effect of image rotation
and visage detection to the success of the networks, the images
in the dataset can be used without the preprocessing. Since the
objective function will be more complicated for both of these
cases it is possible for the ResNet version to be more successful
than the 6-layer network.
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