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ABSTRACT 

With growing data size in multimedia systems, the need for 

successful image classification and retrieval systems becomes 

vital. Nevertheless, the performance of such systems is still 

limited for real-world applications. In this paper, we propose an 

optimized Convolutional Neural Network (CNN) architecture for 

the age classification problem. In order to justify the structure and 

depth of the proposed CNN-based framework, comprehensive 

experiments on a number of different CNN architectures are 

conducted. Based on the fitness of the age classification results 

with respect to success-error ratios, training times, and standard 

deviations of success rates; using exact, top-3 and 1-off criterion, 

the CNN architecture involving 4 convolutional layers and 2 fully 

connected layers is found to be superior to the other CNN-based 

architectures with different number of layers. We evaluate our 

method on a face database consisting of more than 55,000 images.   

CCS Concepts 

• Computing methodologies Neural networks; Object 

identification; Visual inspection. 
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1. INTRODUCTION 
A face image carries a number of human characteristics useful for 

several purposes including face recognition, synthesis, and 

verification. Gender, age, expression, and ethnicity are a few 

examples for such characteristics. Although age is less studied 

than the others, automatic age classification using facial images 

has become increasingly important to a large amount of 

applications in both industry and academia [3]. Given a face 

image, the objective of this problem is to estimate or classify the 

age rather than identify the individual. As an example, 

application, age classification may allow vendine machines to 

decide whether tobacco products should be sold to the current 

customer. Moreover, which age groups are most interested in a 

specific product may also be reported by applications using 

automatic age classification. Despite the fact that companies know 

 

exactly their sales figures, identifying their customer ages cannot 

be done without such an application. 

Although people have the ability to perform the accurate age 

classification with high accuracy [6], building an automatized 

classification system using only facial images remains difficult. 

This is mainly due to the fact that face aging is personalized and 

people have different aging patterns, which depend on several 

internal and external factors, e.g., gender, race, health condition, 

makeup, and ethnicity [5]. A number of frameworks in the 

literature performs age classification/estimation by modeling 

facial appearance and aging pattern. One such approach is 

presented by Lanitis et al. [10], who generate a statistical model of 

facial appearance used as the basis for obtaining a compact 

parametric description of face images. Computing the aging 

pattern based on face images without taking into consideration the 

other internal and external factors is the main limitation of this 

technique. Given a set of face images that belong to the same 

person, the AGES framework [5] models the aging pattern by 

computing a representative subspace. Although AGES does not 

use the factors affecting the aging patterns either, the sequence of 

a person’s face images taken in different times is a lot more 

helpful in modeling the aging pattern. The aging pattern of an 

unseen face image is computed by the projection in the subspace 

that reconstructs the face image with minimum reconstruction 

error. The lack of complete aging patterns yields incomplete 

training data. To deal with this issue, an iterative learning 

algorithm that estimates a part of the missing personal aging 

pattern using the global aging pattern model is adopted. 

The existing techniques on face classification in the literature 

usually consists of two steps: image representation and age 

classification. Besides the ones discussed above, the active 

appearance model (AAM) [17, 13, 20], patch-based model [24], 

anthropometric model [9], and age manifold [4] are the most 

popular. Several approaches formulate the age classification as 

that of multi-class classification [21] or regression [4, 23]. 

Instead of performing age classification using a few selected 

features extracted from the image representation step as done by 

many of the previous approaches, we use convolutional neural 

networks to learn deep features for the age classification task, and 

establish a state-of-the-art result on a face database consisting of 

more than 55k near-frontal face images. In recent years, CNN 

have attracted substantial research attention due to their superior 

performance on several computer vision tasks such as image 

classification [26, 19] and object detection [7, 15]. We 

demonstrate a similar performance gain with a simple network 

architecture. 

In our previous work [1], we compare the performance of three 

existing CNN architectures consisting of 6 layers [11], 18 layers 
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Figure 1. The structure of the convolutional stages involving convolutional, rectified linear unit, normalization and pooling layers. 

The data volumes are shown after each convolutional layer.

(ResNet-18), and 34 layers (ResNet-34) [8] for age classification. 

The results show that the CNN with 6 layers [11] outperforms the 

ResNet architectures although ResNet18 and ResNet-34 are 

successfully used on the ImageNet classification dataset [18] with 

1000 classes. Our proposed framework obtains even better 

classification scores mainly due its optimized architecture for the 

age classification problem with 6 different classes. 

The rest of the paper is organized as follows. After introducing the 

networks in the next section, we present the dataset and 

preprocessing steps applied to each face image in Section 3. We 

describe the experiments and present the performance results 

along with our observations in Section 4. We conclude the paper 

in Section 5. 

2. NETWORKS 
In our previous work [1], we show that for an age classification 

problem dealing with 6 classes, 6-layer plain network [11] 

composing of 3 convolutional layers and 3 fully connected layers 

outperforms the residual ResNet-18 and ResNet-34 architectures 

[8]. Following our observations, we concentrate on the plain 

networks around 6 layers and carry out different experiments to 

find the most suitable CNN architecture for age classification in 

terms of both performance and training time in this work. Instead 

of dealing with the effects of different types of CNN layers on the 

classification performance, we examine the effect of the number 

convolutional layers and fully connected layers on the 

classification performance. To do this, different architectures are 

trained from scratch and their performance scores are computed. 

The CNN architectures studied are composed of two different 

network stages, namely the convolutional stage and fully 

connected stage. Since convolutional layers and fully connected 

layers are the key elements of the defined stages, the stages are 

named by these layers.  

2.1 Convolutional Stages 
In the proposed work, a number of convolutional stages with 

varying depths are generated. The depth of a convolutional stage 

is determined based on the number of convolutional layers in the 

stage. The number of the convolutional layers of the convolutional 

stages used in this paper starts from 2 and extends up to 5. The 

structure of the generated convolutional stages are shown in 

Figure 1 where the number of convolutional layers included in 

convolutional stages increases from top to bottom. Except the first 

convolutional layer, all such layers are followed with Rectified 

Linear Unit (ReLu) layers, Maximum Pooling layers, and 

Normalization (Norm) layers. All of the convolutional stages are 

structured so as to process gray scale images in 227x227 

resolution. The dimensions of the output volumes for all the 

convolutional stages are 384x14x14. Since this volume is equal 

for each convolutional stage, it is possible to connect the 

convolutional stages to the same fully connected stages. This 

allows us to make fair comparisons among the performances for 

all generated CNNs.  

2.2 Fully Connected Stages 
The convolutional stages are followed by 4 different fully 

connected stages. Figure 2 shows this structure. As shown at the 

bottom of this figure, the maximum depth of the fully connected 

stage is 4 and the depth decreases to 1 as moving from bottom to 

top. In the generated fully connected stages, while connecting a 

fully connected layer to the proceeding one, ReLu and Dropout 

layers with a drop out ratio of 0.5 are used. All of the fully 

connected stages are capable of processing 384x14x14 input data 

volumes. The number of the output nodes of the fully connected 

stages is equal to 6, which is the number of the age classes used in 

the proposed work. 

 

 

Figure 2. The structure of the fully connected stages involving 

rectified linear unit, dropout and fully connected layers and 

the nodes after each fully connected layers 



A total of 16 CNN architectures are generated by uniting each of 

the 4 convolutional stages with each 4 fully connected stage 

mentioned above. The training times of the CNN architectures and 

performance results according to various criteria along with 

description of the face dataset and our preprocessing steps are 

presented in the following sections in detail. 

3. DATASET AND PREPROCESSING 
Although the dataset and preprocessing steps we used in this 

paper are the same as our previous study [1], we briefly mention 

them in this part to make the paper self-contained. The proposed 

work is evaluated on the Album-2 of Craniofacial Longitudinal 

Morphological Face Database (MORPH) [16]. As shown in the 

upper two rows of Figure 3, the images in the dataset contain 

frontal color photographs of individuals. The images are recorded 

in varying zoom ratios; and the vertical and horizontal resolution 

of the images are not constant. Therefore, the number of pixels 

belonging to the face zones differ excessively in the recordings. 

Moreover, the directions of the faces with respect to image edges 

are different. A total of 55,134 records of 13k different individuals 

are present in the dataset and the ages of the individuals vary from 

16 to 77. The dataset provides data diversity by containing records 

of individuals from different genders, moods and races. 

In deep learning, it is desirable to have an uncomplicated binding 

function between input and output in order to simplify the training 

procedure. For the age classification problem in this study, this is 

done with simple preprocessing operations whose objective is to 

equalize the amount of relevant information taken from each 

image in the dataset. Furthermore, assimilating the structure of 

images to each other is another purpose of the preprocessing step. 

After the images are converted to grey scale, they are rotated in 

such a way that the vertical direction of the faces in the images 

become parallel to horizontal edge of the images. While 

determining the rotation angles needed for each image, four 

variants of Viola Jones algorithm [22] are used. These are 

classification and regression tree (CART) based [25] and Decision 

stump based [2] eye detections algorithms and Local binary 

patterns (LBP) based [14] and CART based face detection [12] 

algorithms. By varying the eye detection and face detection 

thresholds of the algorithms; and using them in a nested fashion, it 

is possible to find the rotation angles of each image. 

Once the image rotation is done, the visages are cropped from the 

images to equalize the amount of relevant information taken from 

each image. To detect the visages, we use LBP based [14] and 

CART based [12] face detection algorithms. The crops taken from 

each image are rescaled to have a 227x227 resolution. The third 

and fourth rows of Figure 3 presents the preprocessed versions for 

the corresponding images shown in the first and second rows, 

respectively. One may observe that the ratio of facial pixels to 

non-facial pixels in each preprocessed image is closer to each 

other than the one obtained in the original images. 

After the preprocessing step, the horizontal flips of the 

preprocessed images are added to the dataset to double its size. 6 

different age classes are then generated from the database. Table 1 

presents the age borders of the classes and the number of images 

in each class. While 80% of the images are used in training, 20% 

is used in tests and half of the test images are used in validation. If 

an image belonging to an individual is selected in the training or 

test set, its horizontal flip and all other images belonging to the 

same individual are placed to the same set. As detailly described 

in the previous study [1], some of the recordings belonging to 

 

 

Figure 3. The first two rows present the original images, while 

the last two rows show their preprocessed versions. 

Table 1. The Number of Images in Classes 

 

the same individual have different born dates. Thus, some 

corrections are applied to these recording to have more reliable 

age information to be used in the training and test stages. 

4. EXPERIMENTS AND PERFORMANCE 

EVALUATION 
As mentioned before, our previous work [1] shows that the CNN 

architecture consisting of 3 convolutional and 3 fully connected 

layers obtains better age classification scores for the face database 

with 6 classes than the ones with a higher number of layers. Thus, 

we focus on CNNs with around a total of 6 layers. Specifically, 

we generate 16 CNNs starting from 2 convolutional and 1 fully 

connected layers to 5 convolutional and 4 fully connected layers. 

We train each CNN using the same train, validation and test sets. 

The learning rate is fixed to 0.001 while the momentum and 

weight decay values are selected as 0.9 and 0.0001 respectively. 

Each CNN is trained for 70 epochs since error rates for all of the 

CNNs trained tend to increase before reaching this point mainly 

due to the overfit caused by the size of the training dataset. The 

processes run on a single NVIDIA Quadro K4000 192 bit GPU 

with 3GB memory. Figure 4 depicts the average training duration 

for each network. According to the training times, the duration of 

the training increases as the number of the convolutional layers 

grows. This is consistent with our expectations since adding 

convolutional layers increases the data volume to be processed. 

Increasing the number of fully connected layers does not always 

lengthen the training time. As opposed to the data volumes, fully 

connected layers insert nodes to the architectures, which can 

diversify memory access times. Therefore, it is possible to have 

longer training times for CNNs with less number of fully 

connected layers. 

 

Figure 4. Training times for 16 CNNs using 70 epochs 



To measure the performance for each CNN architecture, we use 3 

different criteria: 

• Exact Success: This criterion is successful when the top scored 

class is the same as the exact class of the query. 

• Top-3 Success: Determines whether the one of the top 3 classes 

consists of the query class. 

• 1-Off Success: When the top scored class is the same as the 

exact class of the query or it belongs to one of the neighbor 

classes of the query, this criterion is successful. 

The validation errors for each CNN with respect to exact success 

and top-3 success are shown in Figure 5 and Figure 6, 

respectively. One may observe that CNNs with 1 fully connected 

layer and 4 fully connected layers have less exact success and top-

3 success rates than CNNs with 2 fully connected layers and 3 

fully connected layers. Among the CNNs with 2 fully connected 

and 3 fully connected layers, the former ones have smaller error 

score in both exact success and top-3 success criteria. Thus, the 

CNN with 2 fully connected layers tend to perform better while 

the CNN with 1 or 4 fully connected layers tend to perform worse. 

Validation curves shown in Figures 5 and 6 are also used to 

compare the performance of CNNs having different number of 

convolutional layers. Regarding to the exact success criterion, 

 

Figure 5. Validation errors of the generated 16 CNNs during 

70 epoch training with respect to exact success criterion 

 

Figure 6. Validation errors of the generated 16 CNNs during 

70 epoch training with respect to top-3 success criterion 

CNNs with 2 convolutional layers and 3 convolutional layers do 

not have error rates less than 45%. On the other hand, CNNs with 

4 and 5 convolutional layers achieve error rates less than 45%. 

Moreover, CNNs with 4 and 5 convolutional layers obtain almost 

the same error rate for both exact success and top-3 success 

criteria. Since CNNs with 4 and 5 convolutional layers have 

similar error rates, we do not prefer to use deeper ones requiring 

longer training times as observed from Figure 4. Therefore, by 

examining the validation curves, the optimum CNN we infer for 

our problem is the CNN with 4 convolutional and 2 fully 

connected layers. 

A good classifier, in general, must have a similar level of 

classification capability for each different class. As a result, 

among CNNs with similar age classification success, the one with 

the lower standard deviation value with respect to age classes 

should be considered as a better choice. Figures 7 and 8 present 

the standard deviations computed using the exact and 1-off 

success scores for each CNN. While only validation images are 

used to generate the previously discussed learning curves, both 

validation and test images are used to generate the success and 

standard deviation results shown in these figures. When choosing 

the trained CNN versions, the epochs having minimum validation 

errors for the exact and top-3 success criteria are used. After 

validation and test images are tested with the selected CNN 

versions, the most successful test results using the exact and 1-off 

success criteria are shown in the corresponding figures. 

Having a close look at Figure 7, we observe a similar behavior to 

the previously discussed learning curves for CNNs with 1 and 4 

fully connected layers, i.e., CNNs with 2 and 3 fully connected 

layers are more successful than CNNs with 1 and 4 fully 

connected layers. It is also possible to infer that although CNNs 

with 2 fully connected and 3 fully connected layers have similar 

exact success rates, the former ones have less standard deviation 

values. Therefore, regardless the number of convolutional layers, 

CNNs with 2 fully connected layers are preferable to CNNs with 3 

fully connected layers in terms of exact success. In addition, 

CNNs with 4 and 5 convolutional layers are more successful than 

their counterparts having a less number of convolutional layers. 

We observe that adding one more convolutional layer to the CNN 

with 4 convolutional layers does not increase the exact success 

significantly. Therefore, taking into consideration the exact 

success and standard deviation scores and the network training 

times, the CNN having 4 convolutional layers and 2 fully 

connected layers is preferable. 

According to 1-off success results shown in Figure 8, the 

performance of the CNN with 1 fully connected layer is less than 

their variants with the same number of fully connected layers but 

different number of convolutional layers. When only CNNs 

having equal number of convolutional layers and more than 1 

fully connected layer are examined in groups, we observe that the 

number of fully connected layers do not affect the 1-off success 

dramatically. Instead, the standard deviation varies with the 

number of fully connected layers. For all 4 cases where the 

number of convolutional layers varies from 2-5, CNN with 2 fully 

connected layers have the least standard deviations. Hence, in 

terms of 1-off success and the standard deviation, the CNN with 2 

fully connected layers are preferable. Moreover, we also observe 

from this figure that CNNs with 4 and 5 convolutional layers are 

almost equally successful and perform better than CNNs with 2 

and 3 convolutional layers. Although in terms of 1-off success and 

standard deviation, the CNN with 5 convolutional and 2 fully 

connected layers slightly outperform that with 4 convolutional and  



 

Figure 7. Exact success rate of each CNN with standard deviation while processing test and validation images

 

Figure 8. 1-off success rate of each CNN with standard deviation while processing test and validation images 

2 fully connected layers, we still consider the CNN with 4 

convolutional and 2 fully connected layers as the optimal 

architecture since it achieves the same performance based on the 

exact success and has the less training time. 

Examining the result of the CNN with 2 convolutional stages and 

4 fully connected stages in Figure 7, it is observed that the 

network has a great standard deviation in terms of exact success. 

In order to discuss this situation, the detailed test results of the 

network are shown in Tables 2 and 3. In the Table 2, while the 

columns contributing to both exact success and 1-off success are 

shown in dark green, the columns contributing to only 1-off 

success are shown in light green. According to the results, with 

the network, none of the images of which exact class is [49-] is 

classified correctly and only 22.56% of the images of the class 

[28-34] are classified correctly. Moreover, most of the images in 

these classes are classified as one of their neighboring classes. As 

shown in Figure 7, it is clear that for the CNNS with 4 fully 

connected layers as the number of convolutional layers increases 

the standard deviations decreases. Therefore, we conclude that 

adding fully connected layers to the CNNs which are shallower in 

terms of convolutional layers increases the standard deviation 

with respect to exact success by increases the tendency of the 

CNNs to classify images in some classes as one of their 

neighboring classes. 

5. CONCLUSION 
In this paper, an optimized CNN architecture for the problem of 

age classification is proposed. Rather than focusing on the 

performance effects of the network layers, the effect of having a 

different number of convolutional layers and fully connected 

layers is investigated. In order to find the optimal depth, 16 

different CNN architectures are generated. Each architecture 

contains one of the 4 proposed convolutional stages and one of the 

4 proposed fully connected stages. According to the test and 

validation results, the CNN containing 2 fully connected layers is 

the optimum considering exact success, top-3 success, 1-off 

success criteria and standard deviation values. The CNN 

containing 4 convolutional layers achieves similar performance 

results with the one containing 5 convolutional layers. 

Considering the longer training time for the CNNs with 5 

convolutional layers, we conclude that the convolutional stage 

with 4 convolutional layers is the optimum one. Therefore, the 

proposed CNN architecture consists of 4 convolutional layers with 

2 fully connected layers. We should note that the CNN 

architecture with 3 convolutional and 3 fully connected layers has 

 

Table 2. Test results of CNN with 2 convolutional layers and 4 

fully connected layers with respect to age classes 

 

Table 3. Exact Success % of CNN with 2 convolutional layers 

and 4 fully connected layers with respect to age classes 

 



been presented for age estimation before [11] and it is one of the 

architectures experimented in this study. As shown by the 

experiments, the proposed architecture outperforms this work 

according to the exact success and 1-off success criterion. In 

addition, our architecture results in smaller standard deviation 

with respect to exact success and 1-off success criterion, which is 

also one of the key features of a good image classifier. 

For the future work of this study, we plan to use larger datasets to 

perform more comprehensive tests. Although, by using horizontal 

flips of 55k images in the dataset, the experiments are carried on 

more than 110k samples, the number of samples can still be 

increased to prevent the risk of overfitting while measuring the 

performance scores of the architectures. 
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